The modal logic of continuous functions on cantor space

نویسنده

  • Philip Kremer
چکیده

Let L be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality and a temporal modality , understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language L by interpreting L in dynamic topological systems, i.e. ordered pairs 〈X, f 〉, where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown that S4C is sound and complete for this semantics. Zhang andMints have shown that S4C is complete relative to a particular topological space, Cantor space. The current paper produces an alternate proof of the Zhang-Mints result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The modal logic of continuous functions on the rational numbers

Let L ◦ be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality and a temporal modality ◦, understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language L ◦ by interpreting L ◦ in dynamic topological systems, i.e., ordered pairs 〈X, f 〉, where X is a topological space and f is a continuous function on X ...

متن کامل

Modal Logics of Stone Spaces

Interpreting modal diamond as the closure of a topological space, we axiomatize the modal logic of each metrizable Stone space and of each extremally disconnected Stone space. As a corollary, we obtain that S4.1 is the modal logic of the Pelczynski compactification of the natural numbers and S4.2 is the modal logic of the Gleason cover of the Cantor space. As another corollary, we obtain an axi...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

Topological completeness of extensions of S4

Perhaps the most celebrated topological completeness result in modal logic is the McKinseyTarski theorem that if we interpret modal diamond as topological closure, then S4 is complete for the real line or indeed any dense-in-itself separable metrizable space [10]. This result was proved before relational semantics for modal logic was introduced. In the last 15 years, utilizing relational semant...

متن کامل

Damage identification of structures using experimental modal analysis and continuous wavelet transform

Abstract: Modal analysis is a powerful technique for understanding the behavior and performance of structures. Modal analysis can be conducted via artificial excitation, e.g. shaker or instrument hammer excitation. Input force and output responses are measured. That is normally referred to as experimental modal analysis (EMA). EMA consists of three steps: data acquisition, system identificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arch. Math. Log.

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2006